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Basic Definition 

• Cut Query Model

Oracle

S

V/S

Undirected Graph G
(Unknown)

Cut(S, V/S)

Q: How many query do we need to compute the global minimum cut? 
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“Learn the whole graph”

• A  
• Learn each edge (u, v) by computing Cut({u}) + Cut({v}) −

Cut({u, v}), which requires O(n2) queries [ ]

• For dense graph, one needs at least ~Ω(n2) query to learn the whole 
graph [Rubinstein,  Schramm & Weinberg, ITCS 2018]

• One can use O(n2/log n) query to learn the whole graph[Grebinski & 
Kucherov, Algorithmica 2000]



Motivation

• Q: Can we use  to represent the global minimum cut?

Cut Sparsifier Tools

Expander
Decomposition

Isolating Cut
Cactus 

Representation

Max Flow/Min Cut

Tree Packing

Gomory-Hu Tree



History

• Edge Connectivity in Cut Query Model



State-of-the-Art

• Different Settings in Cut Query Model



Max Flow/Min Cut

• Max Flow Min Cut Theorem
• No Duality Gap for s − t max flow and s − t min cut

max flow value=min cut capacity

• Q: Why should we consider Max Flow as a start point?
• Inspiration: [RSW18] shows that, for graph G with integral weights 

from [0, W], every s − t flow of value f can be covered by edges of at 
most O(n fW) total weight

• We can use O(n n) edges to cover any s-t flow in simple graph!



BIS/Cross Query

• A BIS (Bipartite Independent Set) or Cross Query asks whether there 
exists an edge between two sets U and V. In other words, it checks if 
there is an edge (u, v) such that u ∈ U, v ∈ V.

• Fact:  A BIS/Cross query can be replaced by O(1) Cut Query in 
undirected graph.

U V



Blocking Flow

• Theorem 1: We can use ~O(n5/3) BIS/Cross query to obtain an 
explicit s-t max flow in simple graph [ ]

Li Li + 1 Li + 2



From Flow to Cut

s

t

s
t

How can we guarantee that s and t are on different sides of the minimum cut?



“Preserve the Minimum Cut”

S

V/S

V/S

S

For any vertex set T 

S

V/S
or

Contraction
[e.g. Karger’s Algorithm]

“Preserve the Min Cut”
[e.g. Kawarabayashi & Thorup, STOC 2015]



Dominating Set

• A Key Observation: In simple graph, a dominating set can “preserve 
all non-trivial minimum cut”

Special Case: Star Graph[ ]



Dominating Set

• Theorem 2: If the minium degree is δ, then we can find a dominating 
set D with size at most O( n

δ
 log n

δ
) with ~O(n) cut query.

• Existence: Sample each vertex with probability ~ 1
δ
.

Finding an element


U V

Find u ∈ U such that degV(u) ≥  |E(U, V)|/|U|

In O(log n) queries



Framework of Isolating Cut

• Isolating Cut[Li & Panigrahi, FOCS 2020]

T

Global Minimum Cut

Find smaller T’ preserve the minimum cut
OR

The Global Minium Cut is “unbalanced” 
respect to T



Framework of Isolating Cut

T1 T2

Cut Matching Game

Demand d ≤ δ  [Total Flow Size ≤ ~O(n) ] 
NOT exactly the same as [LP20], we don’t compute T1 − T2 min-cut

d

d

d

d

d
d

Almost every edge saturated

Find balanced sparse cut

OR

Polylog times

Guarantee “Almost Expander”

T

Global Minimum Cut

Find T’ preserve the minimum cut
OR

The Global Minium Cut is “unbalanced”



Minimum Isolating Cut

• For any set of vertices R ⊆ V, r ∈ R, the minimum isolating cut of r is 
an {r} − {R \ {r}} min-cut

r R\{r}

C1

C2

C1 ∩ C2

“Closest min-cut”
[Submodularity]



Subroutine 

• Let d =  τ +  1, we will either outputs an isolating cut of R of size at 
most τ,

• or certifies that the minimum isolating cut of R has a size larger than 
τ.

T1 T2

Cut Matching Game

d

d
If an edge is saturated, then the corresponding 
minimum isolating cut has size at least d.

If the minimum isolating cut of R is Cr less than d, 
then we must have Cr ⊆ C1 or Cr ⊆ V/C1

C1

V \ C1



“From Global to Local”

not saturated in all max-flow call

saturated at least once

Guarantee: each part contains at most 1 black vertex

parallel edges

Super node S(r)

Call r − S(r) max flow



Discussion

~Θ(n) to learn the whole graph

~Ω(n)

~O(n5/3) 

Θ(n1.5) edges to represent s-t max flow explicitly
(worst case)

Deterministic

Random ~Θ(n) Nearly Optimal

GAP


